Dynamical Systems and Non-Hermitian Iterative Eigensolvers

نویسندگان

  • Mark Embree
  • Richard B. Lehoucq
چکیده

Simple preconditioned iterations can provide an efficient alternative to more elaborate eigenvalue algorithms. We observe that these simple methods can be viewed as forward Euler discretizations of well-known autonomous differential equations that enjoy appealing geometric properties. This connection facilitates novel results describing convergence of a class of preconditioned eigensolvers to the leftmost eigenvalue, provides insight into the role of orthogonality and biorthogonality, and suggests the development of new methods and analyses based on more sophisticated discretizations. These results also highlight the effect of preconditioning on the convergence and stability of the continuous-time system and its discretization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Properties of Hermitian and Skew Hermitian Splitting Methods

In this paper we consider the solutions of linear systems of saddle point problems‎. ‎By using the spectrum of a quadratic matrix polynomial‎, ‎we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method‎.

متن کامل

Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers

Preconditioned eigenvalue solvers (eigensolvers) are gaining popularity, but their convergence theory remains sparse and complex. We consider the simplest preconditioned eigensolver— the gradient iterative method with a fixed step size—for symmetric generalized eigenvalue problems, where we use the gradient of the Rayleigh quotient as an optimization direction. A sharp convergence rate bound fo...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Iterative Validation of Eigensolvers: A Scheme for Improving the Reliability of Hermitian Eigenvalue Solvers

Iterative eigenvalue solvers for large, sparse matrices may miss some of the required eigenvalues that are of high algebraic multiplicity or tightly clustered. Block methods, locking, a-posteriori validation, or simply increasing the required accuracy are often used to avoid missing or to detect a missed eigenvalue, but each has its own shortcomings in robustness or performance. To resolve thes...

متن کامل

Iterative Solution of Generalized Eigenvalue Problems from Optoelectronics with Trilinos

In this paper, we study the iterative solution of generalized Hermitian eigenvalue problems arising from the finite-element discretization of k·p models of optoelectronic nano systems. We are interested in computing the eigenvalues close to the band-gap which determine electronic and optical properties of a given system. Our work is based on the Trilinos project which provides an object-oriente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009